- Berikut ini 50 latihan soal latihan PAS UAS Matematika kelas 10 SMA semester 2, berikut dengan kunci jawaban. Contoh soal PAS, UAS Matematika Kelas 10 Semester 2 terdiri dari 50 soal pilihan ganda lengkap dengan kunci jawabannya. Semua soal PAS, UAS Matematika Kelas 10 Semester 2 ini, ditujukan kepada orang tua untuk memandu proses belajar anak menghadapi Penilaian Akhir Tahun PAT atau Ujian Kenaikan Kelas UKK. Pastikan siswa harus terlebih dahulu menjawab soal PAS, UAS Matematika Kelas 10 SMA/MA ini, sebelum menengok hasil kunci jawaban. Gunakan artikel ini untuk mengoreksi hasil pekerjaan siswa. Contoh Soal PAS, UAS Matematika Kelas 10 Kurikulum 2013 1. Diketahui titik C dan D diwikili oleh c=10, 8, dan d=2, 4. Jika diketahui titik R terletak pada vector CD dengan perbandingan CR RD = 1 3. Tentukan titik R!A. 1, 3B. 2, 4C. 7, 7D. 8, 6E. 8, 7 Kunci Jawaban E 2. Sebuah vector yang panjangnya satu, biasa disebut dengan ..A. Vector satuanB. Vector nolC. Vector kolomD. Vector posisiE. Kolinear Kunci Jawaban A 3. Bentuk sederhana vector PQ+QB+BA+AC+AS adalah …A. PPB. AAC. PSD. PCE. QS Kunci Jawaban C 4. Susi suka basket, Nino suka badminton, dan Ali suka sepak bola. relasi yang mungkin dari ketiga anak tersebut adalah...A. macam-macam olah ragaB. bola kesukaan merekaC. olah raga kesukaan merekaD. makanan kesukaan merekaE. hobi mereka Kunci Jawaban C 5. Diketahui fungsi gx= x + 1 dan fx= x2 + x - 1. komposisi fungsi f0 g x = ...A. x2 + 3x + 3B. x2 + 3x + 2C. x2 - 3x + 1D. x2 + 3x - 1E. x2 + 3x + 1 Kunci Jawaban E 6. Suatu fungsi f R → R ditentukan oleh ƒ x = x2 + 2. Anggota dari daerah asal yang mempunyai peta 18 adalah...A. 5 dan -5B. 4 dan -4C. 3 dan -3D. 2 dan -2E. 1 dan -1 Kunci Jawaban B 7. Diketahui himpunan pasangan berurutan dari suatu relasi adalah {1, 3; 2, 3; 2, 4; 3, 1}. Himpunan daerah asalnya adalah...A. {1, 2}B. {1, 2, 3}C. {1, 2, 3, 4}D. {1, 3, 4}E. {3, 4} Kunci Jawaban B 8. Diketahui K = { 3, 4, 5} dan L = { 1, 2, 3, 4, 5, 6, 7}, himpunan pasangan berurutan yang menyatakan relasi " dua lebihnya dari" himpunan K ke himpunan L adalah...A. { 3, 5; 4, 6}B. { 3, 5; 4, 6; 5,7}C. { 3, 1; 4, 2; 5,3 }D. { 3, 2; 4, 2; 5, 2}E. { 3, 1; 3, 2; 3, 3} Kunci Jawaban B 9. Range dari pasangan terurut { 2, 1; 3, 5; 4, 2; 4, 4; 6, 4} adalah...A. {1, 2, 4, 5}B. {1, 2, 3, 4, 5}C. {1, 2, 3, 4, 5, 6}D. {1, 3, 5}E. {2, 4, 6} Kunci Jawaban A 10. Dari pernyataan- pernyataan berikutI. Siswa dengan tempat duduknyaII. Siswa dengan tanggal lahirnyaIII. Negara dengan lagu kebangsaannyaYang berkorespondensi satu-satu adalah...A. Hanya II dan IIIB. Hanya I, II dan IIIC. Hanya I dan IIID. Hanya I dan IIE. Hanya I Kunci Jawaban A 11. Di bawah ini adalah himpunan berpasangan1. 1, a; 2, b; 3, b2. 1, a; 1, b; 3, c3. 2, 4; 4, 8, 6, 124. 2, 4, 2, 8, 6, 12Yang merupakan pemetaan adalah...A. 2 dan 4B. 2 dan 3C. 1 dan 3D. 1 dan 2E. 1 dan 4 Kunci Jawaban C 12. Diketahui suatu fungsi dengan rumus fx = 15 – 2x. jika fa = 7 maka nilai a adalah …….A. 11B. 4C. 1D. 7E. -4 Kunci Jawaban B 13. Berapakah hasil dari 3 log 12 + 3 log 24 – 3 log 1/27…A. 1B. 3C. 4D. 2E. 6 Kunci Jawaban B 14. Apabila 3log2 = a, maka jika 3 log 12 akan memiliki nilai…A. a + 1B. 2a + 1C. 3a + 1D. 2a + 3E. a + 2 Kunci Jawaban B 15. Apabila garis y = bx – a digunakan untuk memotong garis y = ax2 + bx a – 2b pada titik 1,1 dan x0, y0, maka hasil dari x0 + y0 adalah….A. 2B. 0C. -2D. -4E. -6 Kunci Jawaban E 16. Rumus suatu fungsi dinyatakan dengan fx = 2x + 5. Jika fa = 7, nilai a adalah … .A. -1B. -2C. 1D. 2 E. 3 Kunci Jawaban C 17. Diketahui rumus fungsi fx = -1-x. Nilai f-2 adalah … .A. -3B. -2 C. -1D. 1E. 2 Kunci Jawaban D 18. Jika fx = 4x2 + 3x + 5, maka nilai f1/2 adalah ... .A. 5,5B. 6,5C. 7,5D. 8,5E. 9,5 Kunci Jawaban C 19. Jika fx = x2 + 2x – c, dan f3 = 9. Maka nilai c adalah ... .A. 6 B. 5C. -5D. -6E. -8 Kunci Jawaban A 20. 33. Diketahui PQR, jika p = 4 cm, q = 6 cm, dan ∠R=30o maka luas PQR adalah...A. 4 cm2B. 5 cm2C. 6 cm2D. 7 cm2E. 8 cm2 Kunci Jawaban B 21. Jika diketahui segitiga ABC dengan a = 10 cm, b = 12 cm, dan C = 1200 maka luas segitiga tersebut adalah...A. 60 cm2B. 30√3 cm2C. 40 cm2D. 40√3 cm2E. 30 cm2 Kunci Jawaban C sin 4x+sin2x /cos 4x +cos2x senilai dengan....A. tan 3xB. –tan 3xC. cos 3xD. cotan 3xE. – cotan 3x Kunci Jawaban B 23. Tiga buah kapal P,Q,R menebar jaring dan ketiganya membentuk sebuah segitiga. Jika jarak P ke Q 120 m, Q ke R adalah 100 m,dan ∠PQR adalah 120o. Maka luas daerah tangkapan yang terbentuk oleh ketiga kapal tersebut adalah... m2B. 3000√3 m2C. 3000√2 cm2D. 3000√3 cm2E. 3000 m2 Iklan untuk Anda Warga Yang Sakit Lutut dan Pinggul Wajib Membaca Ini!Advertisement byKunci Jawaban A 24. Grafik fungsi fx = sin 4x mempunyai periode...A. πB. 2πC. 3πD. π/2E. 1/3 π Kunci Jawaban B 25. Besar Amplitudo dari grafik y = 2 sin x dalam interval 0o ≤ x 360o adalah...A. 2B. 3C. 6D. –3E. –4 Kunci Jawaban D 26. Jika ƒx = 3x – 5 dan gx = 6 – x – x2, maka ƒx – gx = ....A. x2+ 4x – 11 B. x2 + 4x + 11C. –x2 – 4x – 11D. x2 – 5x + 10E. x2 + 5x – 10 Kunci Jawaban A 27. Jika fx = 2x-1/3x+4 , x≠-4/3, maka f -1 x adalah...A. 4X-1/3X+2 , x ≠-2/3B. 4X-1/3X-2, x ≠2/3C. 4X+1/2-3X , x ≠2/3D. -4X-1/3X -_2 , x ≠2/3E. 4X+1/3X+2 , x ≠2/3 Kunci Jawaban A 28. Diketahui fungsi f A → R dengan fx = x2 + 2x – 3. Jika daerah asal A = {x – 4 ≤ x ≤ 3}, maka daerah hasil fungsi f adalah….A. {y 0 ≤ y ≤ 12}B. {y 5 ≤ y ≤ 12}C. {y – 4 ≤ y ≤ 12}D. {y – 4 ≤ y ≤ 5}E. {y y ≤ 12} Kunci Jawaban C 29. Jika diketahui fungsi fx = x – 11, maka berapakah nilai fx2 – 3fx – fx2?A. 19x – 19x – -25x – -25x + -3x + 11. Kunci Jawaban A 30. Pada segitiga PQR, diketahui panjang sisi PQ = 12 cm, QR = 10 cm, dan besar ∠Q = 30°. Luas segitiga PQR adalah … 30√ 30√ 60. Kunci Jawaban A 31. Diketahui suatu fungsi hx = fx . gx. Jika nilai fx = x + 6 dan gx = 2x – 1, maka berapakah nilai hx?A. 2x2 + 12x – 2x2 + 12x + 2x2 + 11x – 2x2 + 11x + 2x2 – 11x + 6. Kunci Jawaban C 32. Himpunan penyelesaian dari pertidaksamaan x^2-2x-8>0 adalah....A. {x│x4,x ∈R}B. {x│x-4,x ∈R}C. {x│x>-2 atau x>4,x ∈R}D. {x│x≤-2 atau x≥4,x ∈R}E. {x│x≤-2 atau x>4,x ∈R} Kunci Jawaban E 33. Himpunan penyelesaian dari √x-1>√3-xadalah...A. {x│-2B. {x│ 2C. {x│-2≤x<3,x∈R}D. {x│ 2E. {x│-2 Kunci Jawaban A 34. Diketahui gx = 2x + 3 dan fx = x2 – 4x + 6, maka fogx = ….A. 2x2-8x + 12B. 2x2 – 8x + 15C. 4x2 + 4x + 3D. 4x2 + 4x + 15E. 4x2+ 4x + 27 Kunci Jawaban B 35. Nilai x dan y yang memenuhi sistem persamaan y = 2x – 3 dan 3x – 4y = 7 adalah.....A. x = -1 dan y = 2B. x = -1 dan y = -1C. x = 1 dan y = -1D. x = -1 dan y = -2E. x = -1 dan y = 1 Kunci Jawaban C 36. Dalam segitiga ABC, A, B, dan C merupakan sudut-sudutnya. Jika tan A = 3/4 dan tan B = 4/3, maka sin C =....A. -1B. 2C. 1D. 24/25E. - 24/25 Kunci Jawaban B 37. Diketahui segitiga ABC dengan panjang AB = 6 cm, BC = 5 cm dan AC = 4 cm. Nilai cos B adalah …A. 1/2B. 3/4C. 4/5D. 8/9E. 11/12 Kunci Jawaban C 38. Jika sin A = 12/13, maka cos 2 A = ....A -160/169B. 160/ 169C -119/169D. 25/169E. -25/169 Kunci Jawaban B 39. Dalam sebuah segitiga KLM, diketahui k = 4 cm, l = 3 cm, dan luasnya 6 cm2. Besar sudut apit sisi k dan l adalah...A. 1200B. 900C. 600D. 450E. 300 Kunci Jawaban C 40. Himpunan pasangan berurutan berikut yang merupakan fungsi adalah ... .A. {2,2,1,1,3,2} B. {2,2,2,1,2,3}C. {2,2,2,3,3,2}D. {3,2,3,3,4,3}E. {1,3,3,1,3,3} Kunci Jawaban A 41. Range dari himpunan pasangan berurutan {2, 1, 3, 5, 4, 2, 4, 4, 6, 4} adalah …A. {1, 2, 3, 5} B. {1, 2, 4, 5}C. {1, 2, 3, 4, 5}D. {1, 2, 3, 4, 5, 6}E. {1, 2, 3, 4, 5, 6} Kunci Jawaban B 42. Diketahui A = {2,3} dan B = {1,3,5}. Banyaknya anggota A x B adalah ... .A. 8 buah B. 6 buah C. 4 buah D. 3 buah .E. 2 buah Kunci Jawaban B 43. Ukuran sudut 2100 kalau dinyatakan dalam radian adalah....A. 7/12 π 7/6 π 4/12 π 6/7 π 12/7 π rad Kunci Jawaban D 44. Sudut rad., kalau dinyatakan dalam derajat adalah...A. 32,260B. 35,260C. 37,260D. 39,260E. 40,260 Kunci Jawaban B 45. 100 + 200 + π/6+ π/4+π/3 sama dengan ... A. 1350B. 1650C. 1800D. 2100E. 2750 Kunci Jawaban B 46. Sudut rad., kalau dinyatakan dalam derajat adalah...A. 32,26 derajatB. 37,26 derajatC. 39,26 derajatD. 30,26 derajatE. 25,78 derajat Kunci Jawaban E 47. Suatu segitiga ABC siku-siku di B, besar sudut A = 30 derajat, panjang AB = 15 cm. Panjang sisi AC adalah…A. 10 cmB. 10 cmC. 5 cmD. 15 cmE. 30 cm Kunci Jawaban C 48. Diketahui cos α derajat adalah 1/2. α sudut lancip 0 derajat < α derajat < 90 derajat. Berapa nilai perbandingan trigonometri sudut α derajat yang lain?A. cos sec α = c/a = 2/√3 = 2/3√6B. cos sec α = c/a = 2/√3 = 2/3√4C. cos sec α = c/a = 2/√3 = 2/4√3D. cos sec α = c/a = 2/√3 = 1/2√3E. cos sec α = c/a = 2/√3 = 2/3√3 Kunci Jawaban E 49. Berapa radian jarak putar jarum menit sebuah jam apabila ia berputar selama 45 menit?A. 45/720 2π=1/16πradB. 45/720 2π=1/8πradC. 45/120 2π=1/2πradD. 45/620 2π=1/3πradE. 45/420 2π=1/4πrad Kunci Jawaban B 50. Dalam sebuah segitiga KLM, diketahui k = 4 cm, l = 3 cm, dan luasnya 6 cm2. Besar sudut apit sisi k dan l adalah...A. 120 derajatB. 90 derajatC. 45 derajatD. 30 derajatE. 60 derajat Kunci Jawaban E * Disclaimer artikel ini hanya ditujukan kepada orangtua untuk memandu proses belajar anak. Sebelum melihat kunci jawaban, siswa harus terlebih dahulu menjawabnya sendiri, setelah itu gunakan artikel ini untuk mengoreksi hasil pekerjaan siswa. Artikel ini telah tayang di dengan judul 50 Soal PAS, UAS Matematika Kelas 10 Semester 2 K13 dan Kunci Jawaban Penilaian Akhir TahunC Latihan : 1. Dari sebuah sudut-tiga-bidang S.ABC diketahui : a = b. Buktikan, bahwa bidang-bagi sudut merupakan bidang bagi-tegak ASB ! 2. Dari sebuah sudut-tiga-bidang S.ABC diketahui : a = b = 45 , dan c = 60 . Hitung besar sudut = 90 3. Hitung panjang jarak titik A kebidang BSC dari sudut-tiga-bidang S.ABC, jika diketahui : a.
PembahasanJawaban yang benar untuk pertanyaan tersebut adalah . Ingat ! Jika diketahui titik A x 1 ​ , y 1 ​ , z 1 ​ ​ dan titik B x 2 ​ , y 2 ​ , z 2 ​ ​ . Maka AB = OB − OA = x 2 ​ − x 1 ​ , y 2 ​ − y 1 ​ , z 2 ​ − z 1 ​ a ⋅ b = x 1 ​ x 2 ​ + y 1 ​ y 2 ​ + z 1 ​ z 2 ​ ∣ ∣ ​ a ∣ ∣ ​ = x 1 2 ​ + y 1 2 ​ + z 1 2 ​ ​ cos θ ​ = ​ ∣ a ∣ ∣ ∣ ​ b ∣ ∣ ​ a ⋅ b ​ ​ Sudut ACB merupakan sudut yang terbentuk antara vektor CA dan vektor CB . cos ∠ACB = ∣ ∣ ​ CA ∣ ∣ ​ ⋅ ∣ ∣ ​ CB ∣ ∣ ​ CA ⋅ CB ​ Vektor CA CA ​ = = = ​ OA − OC ⎠⎛ ​ 4 − 6 4 ​ ⎠⎞ ​ − ⎠⎛ ​ 0 2 8 ​ ⎠⎞ ​ ⎠⎛ ​ 4 − 8 − 4 ​ ⎠⎞ ​ ​ Vektor CB CB ​ = = = ​ OB − OC ⎠⎛ ​ − 2 0 4 ​ ⎠⎞ ​ − ⎠⎛ ​ 0 2 8 ​ ⎠⎞ ​ ⎠⎛ ​ − 2 − 2 − 4 ​ ⎠⎞ ​ ​ Menentukan nilai CA ⋅ CB CA ⋅ CB ​ = = = ​ ⎠⎛ ​ 4 − 8 − 4 ​ ⎠⎞ ​ ⎠⎛ ​ − 2 − 2 − 4 ​ ⎠⎞ ​ − 8 + 16 + 16 24 ​ Menentukan panjang CA ∣ ∣ ​ CA ∣ ∣ ​ ​ = = = = = ​ 4 2 + − 8 2 + − 4 2 ​ 16 + 64 + 16 ​ 96 ​ 16 ⋅ 6 ​ 4 6 ​ ​ Menentukan panjang CB ∣ ∣ ​ CB ∣ ∣ ​ ​ = = = = = ​ − 2 2 + − 2 2 + − 4 2 ​ 4 + 4 + 16 ​ 24 ​ 4 ⋅ 6 ​ 2 6 ​ ​ Menentukan besar sudut ACB . cos ∠ACB θ θ ​ = = = = = = = ​ ∣ ∣ ​ CA ∣ ∣ ​ ⋅ ∣ ∣ ​ CB ∣ ∣ ​ CA ⋅ CB ​ 4 6 ​ ⋅ 2 6 ​ 24 ​ 8 ⋅ 6 24 ​ 48 24 ​ 2 1 ​ arc cos 2 1 ​ 6 0 ∘ ​ Dengan demikian, besarsudut ACB adalah 6 0 ∘ .Jawaban yang benar untuk pertanyaan tersebut adalah . Ingat ! Jika diketahui titik dan titik . Maka Sudut merupakan sudut yang terbentuk antara vektor dan vektor . Vektor Vektor Menentukan nilai Menentukan panjang Menentukan panjang Menentukan besar sudut . Dengan demikian, besar sudut adalah .
MengenalSegitiga dan Segiempat, yaitu mampu menyebutkan pengertiannya, unsur-unsurnya, sifat-sifatnya, dan jenis-jenisnya. Mampu menentukan besaran-besaran yang ada pada Segitiga dan Segiempat seperti besar sudut, panjang ruas garis, sisi, keliling dan luas. Mampu menerapkan dalam penyelesaian masalah. Oke sekian dulu ya, semoga bermanfaat.MatematikaGEOMETRI Kelas 11 SMATransformasiDilatasi PerkalianDiketahui segitiga ABC dengan titik sudut A-1,1,B-3,1, dan C-1,4. Jika segitiga tersebut didilatasikan dengan [O, -1], maka segitiga bayangan adalah segitiga A'B'C' dengan ....Dilatasi PerkalianTransformasiGEOMETRIMatematikaRekomendasi video solusi lainnya0232Tentukan bayangan dari persegi ABCD dengan titik sudut A...0242Bayangan titik P5, 4 jika didilatasi terhadap pusat -2...0252Hasil dilatasi terhadap titik B-1, 3 dengan pusat O0, ...0239Segitiga KLM dengan K6,4,L-3,1 , M2, -2 didilatasi ...Teks videoBerikut merupakan soal dari transformasi geometri Mari kita lihat soalnya diketahui terdapat segitiga ABC mempunyai titik sudut a b dan c. Misalkan ada segitiga A B dan C mempunyai koordinat masing-masing di koordinat kartesius berarti kalau misalkan diberikan garis seperti ini x y jika segitiga tersebut didilatasikan dengan pusat nya ini Oh ini maksudnya adalah dengan pusatnya 0,0 berarti disini koma minus 1 minus 1 artinya adalah nilai dilatasi Nya maka segitiga bayangan adalah segitiga a aksen B aksen C aksen dengan titik-titik Sebelum kita mulai mengerjakan menggunakan rumus pertama-tama saya akan menjelaskan konsep nya jadi awalnya misalkan kita punya segitiga seperti ini ABC ketika kita dilatasikan maka kitaMemperbesar atau memperkecil atau bisa juga memperbaiki arahnya karena di sini minus Artinya kita akan memper balik arahnya misalkan di kuadran kartesius kan ini kuadran 1 kuadran 2 kuadran 3 dan 4. Nah, kalau awalnya di kuadran 1 karena dia dilatasinya min 1 maka nanti posisinya jadi dikuadran 3 akan seperti itu Nah untuk mengerjakannya kita akan menggunakan rumus matriks untuk dilatasi dengan nilai kayaknya itu pusatnya 0,0 jadi rumus dilatasi adalah x aksen y aksen = 0. Jika dikalikan x y Maksudnya seperti gimana sih jadi Kak ini adalah nilai dilatasinya berarti kalauSoal di sini nilainya adalah minus 1. Nah X aksen D aksen adalah bayangan dari titik yang sebenarnya Jadi kalau misalkan di sini kita punya titik D Min 1,1 koordinat ya maka X yaitu - 1 dengan 1 x aksen y aksennya adalah hasil bayangan dari dilatasi nya seperti itu sekarang Mari kita langsung kerjakan menggunakan rumus yang pertama kita punya titik a karena yang diminta adalah nilai bayangannya berarti a aksen = b. Maka rumusnya X aksen D aksen = kakaknya di sini ada minus 1 minus 10 minus 1 dikalikan koordinat dari adanya aksi itu di MIN 1 dan ini itu di 1 lalu kita kalikan untuk mendapatkan koordinatdari bayangan titik a min 1 x min 1 menjadi 10 dikali 1 jadi 0, maka 1 + 2 hasilnya 1 selanjutnya 0 - 10 - 1 dikali 1 menjadi minus 1, maka koordinat bayangan dari titik A adalah 1 - 1 yang B bayangan dari B kita gunakan rumus yang sama X aksen y aksen = k Min 100 - 1 dikalikan titik yang awalnya x + 3 dan Y 1 berarti minus 3 dan 1 Mari kita kalikan menggunakan matriks Aji minus 1 dikali minus 33 + 0 x 1 Maka hasilnya 3 + 0 yaitu 3 artinya yang bawahnya 0 x minus 3minus 1 dikali 1 menjadi minus 1, maka hasil dari titik bayangan dari b atau b aksen adalah 3 - 1 sekarang kita lakukan hal yang sama ke titik c titik c = x aksen D aksen = kita ulangi min 1 x 00 x min 1 dikali titik-titik jadinya di sini adalah x min 1 dan y nya di 4 maka kita masukkan - 1 dan 4 = min 1 x min 1 menjadi 1 lalu 0 dikali 4 menjadi 0 maka 1 + 0 menjadi 10 dikali minus no minus 1 dikali 4 jadi minus 4 maka bayangan dari titik c atau C aksen adalah 1 koma minus 4Maka bayangan dari titik A adalah 1 koma min 1 bayangan dari titik B atau b. Aksen 2 3 koma min 1 dan bayangan dari titik c atau C aksen 0 1 koma Min 4 maka jawabannya yang di scan dari sore ini sampai jumpa di tahun berikutnya
GarisTinggi Segitiga adalah garis yang melalui salah satu titik sudut segitiga dan tegak lurus dengan sisi di depannya. (biasanya ada tanda sudut 90derajat) DIketahui segitiga ABC. Jika ingin membuat garis tinggi di titik B, maka: 2) Garis bagi segitiga.
Kelas 11 SMAPersamaan TrigonometriPersamaan TrigonometriDiketahui segitiga ABC dengan sudut B = 45 dan CT garis tinggi dari sudut C Jika BC = a dan AT = 3/2 a akar2, maka AC =Persamaan TrigonometriPersamaan TrigonometriTRIGONOMETRIMatematikaRekomendasi video solusi lainnya0051Besar sudut 3/4 phi rad sama dengan....0531Himpunan penyelesaian dari persamaan sin 5x/a = sin 220...0104Bentuk sin^4x-cos^4x/tan^2x-1 ekuivalen dengan bent...0227Tentukan himpunan penyelesaian persamaan sin2x-15=sin2...Teks videoJika kalian menemukan soal seperti ini kalian Gambarkan dulu segitiga nya sesuai dengan yang diberitahu. Bagaimana cara menggambarnya dari soal 45 derajat lalu CT nya itu tinggi dari segitiga itu maka kita Gambarkan seperti ini kira-kira gambarnya akan menjadi seperti ini lalu kita ketahui di sini sudutnya 45 derajat lalu untuk garis CT lalu diketahui BC nya adalah a. Di sini berarti a lalu atm-nya kita ketahui sini 3/2 A akar 2 maka kita akan mencari nilai AC kita sudah mengetahui kalau sudut b adalah 45 derajat kita akan gunakan sin 45 derajat sin 45 derajat sin itu adalah D berarti depannya kita mengetahui adalah CT per ngirimnya itu becek Nah, disini kita cari dp-nya agar lebih mudah Kita pindah rumah saja langsung di sini berarti misal CT per BC = Sin 45derajat. Jadi kalau kita ingin mencari CT itu = Sin 45derajat dikalikan dengan BC Nah kita dapat c t = sin 45 derajat adalah 1 per 2 akar 2 lalu BCA kita ketahui adalah a. Maka kita dapat c t = a per 2 √ 2 kita sudah dapat CT nya kita lanjut Sekarang kita akan mencari ac-nya kita sudah mengetahui CT Nah di sini berarti kita akan mencari Aceh lewat pythagoras tapi kalau ingin mencari Aceh itu = akar dari X kuadrat ditambah c t kuadrat jadi kita tinggal masukkan saja AC = a t kuadrat berarti kita masukan atau berapa Apa itu 3/2 a √ 2 dikuadratkan dulu lalu ditambah Katanya kita ketahui adalah a per 2 akar 2 b kuadrat dan juga ini akan kita dapatkan kita hitung dulu 3 kita kuadrat kan jadi 9 Lalu 2 kita kuatir akan jadi 4 hanya kita kuadratkan lalu duanya tetap jadi 2 nah disini kita bisa coret ini jadi dua lalu + a kuadrat lalu per 2 dikuadratkan jadi 4 √ 2 dikuadratkan tetap jadi 2 ini kita juga bisa coret jadi 2 maka Aceh kita dapatkan = 9 a kuadrat per 2 + ini jadi aquadrat per 2 kita tambah AC = akar 9 a kuadrat + a kuadrat dari 10 a kuadrat per 2. Nah ini kita bisa bagi jadi akar 5 kuadrat lalu disini kita hitung lagi akar 5 berarti tidak bisa diakarkan lagi kita buat saja akar 5 lalu a kuadrat ya akar a kuadrat akan terjadi maka kita dapatkan jawabannya adalah a √ 5 jawabannya adalah C sampai bertemu di soal berikutnyaSukses nggak pernah instan. Latihan topik lain, yuk!12 SMAPeluang WajibKekongruenan dan KesebangunanStatistika InferensiaDimensi TigaStatistika WajibLimit Fungsi TrigonometriTurunan Fungsi Trigonometri11 SMABarisanLimit FungsiTurunanIntegralPersamaan Lingkaran dan Irisan Dua LingkaranIntegral TentuIntegral ParsialInduksi MatematikaProgram LinearMatriksTransformasiFungsi TrigonometriPersamaan TrigonometriIrisan KerucutPolinomial10 SMAFungsiTrigonometriSkalar dan vektor serta operasi aljabar vektorLogika MatematikaPersamaan Dan Pertidaksamaan Linear Satu Variabel WajibPertidaksamaan Rasional Dan Irasional Satu VariabelSistem Persamaan Linear Tiga VariabelSistem Pertidaksamaan Dua VariabelSistem Persamaan Linier Dua VariabelSistem Pertidaksamaan Linier Dua VariabelGrafik, Persamaan, Dan Pertidaksamaan Eksponen Dan Logaritma9 SMPTransformasi GeometriKesebangunan dan KongruensiBangun Ruang Sisi LengkungBilangan Berpangkat Dan Bentuk AkarPersamaan KuadratFungsi Kuadrat8 SMPTeorema PhytagorasLingkaranGaris Singgung LingkaranBangun Ruang Sisi DatarPeluangPola Bilangan Dan Barisan BilanganKoordinat CartesiusRelasi Dan FungsiPersamaan Garis LurusSistem Persamaan Linear Dua Variabel Spldv7 SMPPerbandinganAritmetika Sosial Aplikasi AljabarSudut dan Garis SejajarSegi EmpatSegitigaStatistikaBilangan Bulat Dan PecahanHimpunanOperasi Dan Faktorisasi Bentuk AljabarPersamaan Dan Pertidaksamaan Linear Satu Variabel6 SDBangun RuangStatistika 6Sistem KoordinatBilangan BulatLingkaran5 SDBangun RuangPengumpulan dan Penyajian DataOperasi Bilangan PecahanKecepatan Dan DebitSkalaPerpangkatan Dan Akar4 SDAproksimasi / PembulatanBangun DatarStatistikaPengukuran SudutBilangan RomawiPecahanKPK Dan FPB12 SMATeori Relativitas KhususKonsep dan Fenomena KuantumTeknologi DigitalInti AtomSumber-Sumber EnergiRangkaian Arus SearahListrik Statis ElektrostatikaMedan MagnetInduksi ElektromagnetikRangkaian Arus Bolak BalikRadiasi Elektromagnetik11 SMAHukum TermodinamikaCiri-Ciri Gelombang MekanikGelombang Berjalan dan Gelombang StasionerGelombang BunyiGelombang CahayaAlat-Alat OptikGejala Pemanasan GlobalAlternatif SolusiKeseimbangan Dan Dinamika RotasiElastisitas Dan Hukum HookeFluida StatikFluida DinamikSuhu, Kalor Dan Perpindahan KalorTeori Kinetik Gas10 SMAHukum NewtonHukum Newton Tentang GravitasiUsaha Kerja Dan EnergiMomentum dan ImpulsGetaran HarmonisHakikat Fisika Dan Prosedur IlmiahPengukuranVektorGerak LurusGerak ParabolaGerak Melingkar9 SMPKelistrikan, Kemagnetan dan Pemanfaatannya dalam Produk TeknologiProduk TeknologiSifat BahanKelistrikan Dan Teknologi Listrik Di Lingkungan8 SMPTekananCahayaGetaran dan GelombangGerak Dan GayaPesawat Sederhana7 SMPTata SuryaObjek Ilmu Pengetahuan Alam Dan PengamatannyaZat Dan KarakteristiknyaSuhu Dan KalorEnergiFisika Geografi12 SMAStruktur, Tata Nama, Sifat, Isomer, Identifikasi, dan Kegunaan SenyawaBenzena dan TurunannyaStruktur, Tata Nama, Sifat, Penggunaan, dan Penggolongan MakromolekulSifat Koligatif LarutanReaksi Redoks Dan Sel ElektrokimiaKimia Unsur11 SMAAsam dan BasaKesetimbangan Ion dan pH Larutan GaramLarutan PenyanggaTitrasiKesetimbangan Larutan KspSistem KoloidKimia TerapanSenyawa HidrokarbonMinyak BumiTermokimiaLaju ReaksiKesetimbangan Kimia Dan Pergeseran Kesetimbangan10 SMALarutan Elektrolit dan Larutan Non-ElektrolitReaksi Reduksi dan Oksidasi serta Tata Nama SenyawaHukum-Hukum Dasar Kimia dan StoikiometriMetode Ilmiah, Hakikat Ilmu Kimia, Keselamatan dan Keamanan Kimia di Laboratorium, serta Peran Kimia dalam KehidupanStruktur Atom Dan Tabel PeriodikIkatan Kimia, Bentuk Molekul, Dan Interaksi Antarmolekul